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Abstract

Employing the Galerkin method, we find altogether four solutions for the
Navier-Stokes equation describing the airflow around a fluid sphere. Two solutions are
real, and two are complex. Of the two real solutions, one is a standard solution described
by Kawaguti some time ago. A new real solution is distinctly different from the standard
one and, as such, gives a qualitatively different description of the flow around a sphere.
For large Reynolds numbers, this new solution should be appropriate for deducing the
critical forces on the fluid sphere responsible for its breakup.
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Executive Summary

In support of the Air Defense Intercept effort, the author proposes to model the fluid breakup
through the Navier-Stokes equation by studying the flow instability around the spherical fluid at
very high air velocities. Essentially, the air treated here as a fluid exhibits highly nonlinear
behavior. The breakup of the spherical fluid is to be connected to secondary flow and flow
instability of the air around the spherical fluid. In addition to the standard real Galerkin method
solution of the Navier-Stokes equation, valid mostly for small Reynolds numbers, a new real
Galerkin method solution has also been found. It is distinctly different from the standard one
and, therefore, should be capable of describing the flow at large Reynolds numbers. As such, it

is appropriate for deducing the breakup of the ejected fluid.
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1. Introduction

1.1 Purpose. The purpose of this report is to describe and illustrate the numerical Galerkin
method solution of the Navier-Stokes equation as applied to the breakup of an agent released

from a missile.

1.2 Background. Afier a dense fluid is ejected by the impact from the intercept, it travels at
very high (most often, sonic) speeds through the air. In what follows, the author assumes, to a
good approximation, that the ejected fluid is of a spherical shape. However, the secondary flow
and flow instability of the air (treated here as a fluid) around the spherical fluid believed to be
responsible for the fluid breakup represents a highly nonlinear problem when being tackled by
the Navier-Stokes equation. The flow (velocity) field can be computed in one of the two ways:
by numerical methods seeking a solution for velocities only at a set of selected grid points in the
flow region, or by the Galerkin method, in which the solution of the flow field is approximated
by a continuous function expanded in terms of polynomials with arbitrary coefficients.
Regardless of whether the numerical or the Galerkin method is used, the fact that the dense fluid
is assumed to be of spherical shape should be helpful when formulating the problem through the

Navier-Stokes equation for the motion of air as a fluid around it.

1.2.1 General. For the description of the air streaming around the spherically shaped
high-density fluid (Figure 1), the form of the Navier-Stokes equation as originally given by
Hughes and Gaylord [1] is particularly useful Then, choosing the origin of the spherical
coordinates at the center of the sphere, an assumption can be made that far away from the sphere
the flow is of a constant speed U along the z-axis. It is easily seen that the z-axis represents axis
of axial symmetry; the flow (velocity) field is independent of the azimuthal angle (coordinate) ¢.
In essence, there are only two independent velocity components—u;,, the radial component and
ug, the angular component. For such an axisymmetric configuration for which the velocity flow
field is independent of ¢, a Stoke’s scalar stream function y can be introduced, which, in turn,

determines u, and us.




Figure 1. Representation of the Coordinate System With the Origin in the Center of a
Fluid Sphere Traveling With Very High (Sonic) Speeds Through the Air.

The boundary conditions must be taken into account properly and are actually quite simple.
The velocity components u, and uy must be both zero on the sphere, and the flow far away from
the sphere must be uniform. These boundary conditions are now easily translated to the Stokes

scalar stream function .

The Navier-Stokes equation in the form of Hughes and Gaylord [1] is now rewritten for the
Stokes scalar stream function . Although, instead of two vector field components, u, and ug,
there is now a differential equation for just one scalar function v. Even so, this is still a very

complicated differential equation, quadratic both in differential operators and the function .
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Specializing now to the Galerkin method, y must be expanded in terms of a complete set of

basic functions F(r,£), where r is the radial distance and £ =cosf. In order to satisfy the
boundary conditions, the simplest approach is to make FE(r,£) a linear combination of the
Legendre polynomials, P,(£), where the coefficients in the expansion a; (r) are still functions of

the radial distance r.

Determining the coefficients a,(r) is actually a very difficult task, except in simplified
special situations. When determining these coefficients on the sphere, the Navier-Stokes
equation must be satisfied exactly for approximated y; away from the sphere, there is generally
an error. The demand that the distribution of this error throughout the flow field vanish, at least
in principle, supplies a set of algebraic equatiohs. Finding the solution of these equations is a
major task and it can be done; the solutions, once found, determine the expansion coefficients.

This, in turn, gives the approximated , which then becomes a known function of r and 6.

Having obtained the stream function y, many properties of the flow around the sphere can be
deduced (i.e., the flow pattern since it is now easy to obtain the velocity components u, and ug, as
well as their derivatives). However, to find out under which conditions (e.g., at which air
speeds) the sphere starts to break up, the drag of the sphere must be computed. This can be done
with the help of the normal and shear stresses which are given in terms of the derivatives of air
velocity components at the surface of the sphere. In any case, the drag of the sphere consists of
two parts: Dy, the pressure drag (also known as the form drag) caused by the normal stresses and
D;, the skin friction caused by shear stress on the surface of the sphere. To evaluate D,, the
pressure which can be obtained in pﬁnciple from the Navier-Stokes equation in the Hughes and

Gaylord form [1] must be known.

1.2.2 Threat. The methodology presented in this report addresses the effects of agent-fluid

break-up threats on soldiers and a military weapon system from both ballistic and cruise missiles.




1.3 Scope. The scope of this report is to utilize a physics approach to solving and

understanding problems of fluid breakup associated with ballistic and cruise missiles.

2. Theoretical Formulation of the Method

It can be assumed that for a hurling airborne spherical fluid, the air itself, as long as there are
no additional forces acting on the system, to a good approximation, is incompressible; that is, its

density is practically constant in time, which means:

Dp_ D 8 _

0,—=—+1.V.
Dt Dt ot
Owing to the continuity equation,
100 . v.s-o0. | )
p Dt

This means that the velocity of the air-fluid element is divergenceless:

V-i=0. V)

The origin of the spherical coordinate system (r.8,9) is situated at the center of the fluid
sphere, whose radius is a (Figure 1). Far away, the flow of the air is of constant speed and, by
definition, in the z-direction, i = Z2U. Furthermore, the axisymmetric configuration (the velocity
flow field of the air around the fluid sphere is independent of ¢) is exploited. For such a flow, a
Stokes stream scalar function ¥ is introduced, which, in turn, defines the r and 0 components of

the velocity as




1y _ 1 ¥ &)

U =
r’sind o8 r? cosd
and

___ 1 oy 4
r sinf or @

In what follows, the form of the incompressible Navier-Stokes equation as given by Hughes

and Gaylord [1] is utilized as follows:
p,:%_'ﬁx(Vxﬁ)}=—V(p+%p ﬁzj—p,Vx(ini), (5)

where p is the kinematic viscosity of the air.

As mentioned in section 2, a very important and rather helpful quantity when trying to solve
equation (5) is the dimensionless Reynolds number R, defined generally as

UL
R =7,[,L=Pp, (6)

where U and L denote a typical flow speed and a characteristic length scale, respectively [2].
For example, for air flowing around the dense fluid sphere, L = 2a, where a is the radius of the
sphere. U, of course, is simply the magnitude of the incoming velocity of the air toward the
sphere. Equation (6) shows the connection between the ordinary (u) and the kinematic (v)

viscosity, where p is the density of the fluid, the air in our case.

~ Already from equation (5), the usefulness of the Reynolds number can be seen by

estimating the orders of magnitudes for inertia and viscous terms. Namely, from




—pux(Vxi)= —(p/2)V1'i2 +p(U- V), the inertia term is identified with p(ii-V)d while, on
the other hand, from — uVx(Vx i) =-pV(V-8) + pV2i = pV>u, the viscous term is identified
with pV*i. Assuming now that the derivatives of the velocity components typically change by

amounts of order U/L over distances of order L, the following order of magnitude estimates for

the inertia and viscous terms in equation (5) are obtained:
inertia term: p|(ii- V)i | = pO(U*/L), (7
and
viscous term: IptVZiiI = pO(UM?). (8)

Hence, it can be deduced that

. . )
lmertla terml _ O( U-</L

VU/L2)= OR.). €)

lviscous terml B

So, it can be seen immediately that R, >>1 corresponds to the motion of fluid of small

viscosity and/or large L. However, R <<1 does not always mean the motion of fluid of large

viscosity; R <<1 can also be achieved with small L.

With the assumption of steady flow (8ii/dt=0), after taking the curl of both sides of the
equation (variations of p and p with respect to space and time are assumed to be negligible), and

taking into account equations (3) and (4), one obtains the following equation for ¢ :

—21_—(%2-%—6—+200t0%—2—52)D2¢=iD411/, (10)
r’sinf\ o0 or or 6 o 1o R

€



where the operator D? is defined as

2 : ’
Dz=62+s1r20£( '1 _8_) a1
or r® 00\sinf 00
As usual, the Reynolds number based on the diameter of the sphere is
R, =202 (12)
@

Now, it is clear that the velocity of the air-fluid element depends on rand©; as such, it

should vanish at the surface of the sphere. Therefore,

Y¥(a,0) =0, (13)
and
%(a,ﬁ) -o. (14)
Furthermore, away from the sphere r — o, it is obtained from equation (10) that
D*Y(r,0) =0 ast —> oo, (15)
implying that

1,b(r,0)=—glr2 sin’f as r — oo, (16)




which is the statement that the flow far away from the body is uniform; U. is the initial velocity

of the air in the z-direction.

Equations (13), (14), and (16) have to be satisfied throughout the calculations; in fact, these

equations practically require the use of Legendre polynomials when expanding v in terms of a

complete set of basic functions.

Without actually solving the problem numerically and/or analytically, the behavior of the
fluid sphere in the air at very high velocities can be addressed. Namely, at small Reynolds
numbers, R, the drag of the sphere is dominated by the skin friction; while for R, >90, the
pressure drag becomes more important. Since R, increases as the velocity around the sphere

increases, this means that the pressure is rather important in the breakup of the fluid at higher air
velocities. Now one can proceed phenomenologically to determine how the breakup of the fluid
sphere is related to drag, pressure stress, shear stress, or the pressure itself; however, this may

take some time to figure out.

3. Implementation of the Galerkin Method to Solve the
Navier-Stokes Equation for Finite Reynolds Numbers

As mentioned earlier, the calculations are easier to track if we use the new variable
& =cosé. : 17)

With this variable, the nonlinear differential equation from (10) now becomes

= - - Tz _

e

iD4¢+iz(a‘/’a wo_ 2% %‘f- 26")})2:;:0, (18)
r

where now




¥ =Y(r,§) (19)

and
paZ R T (20)
Furthermore,
D*y=0asr —> o (21)
yields
() = —{zirz(l —£%)asr—> . (22)

Now, the Galerkin method demands that the solution to equation (18) or equivalently to
equation (10) be approximated by a polynomial formed from a set of some basic functions.
Taking into account equations (13-16) and (22), it is not difficult to see that these basic functions
should involve the Legendre polynomials, defined here by Rodrigues’ formula [3]:

1 il 2 _1\m
g & D7 @3)

P.(§)=

A few quotes follow:

. P,(E)=1.
. P®)=E.

. Pz(a)=§(3a2 ~1).




- B©)=—(sg’ -3t)

1
2

.« P,(®) =%(35§4 ~30¢2 +3).
The basic functions F,(r,&) are chosen in the following form [1, 4]:

F(r.8) =f,@[P.(®) - P, (®)], (24)

where, due to orthogonality of the Legendre polynomials, the orthogonality of F,(r,&) is

1
[EEHF ez~ 8, (25)
-1
The solution is simply approximated by the following linear combination:
@ =Y EE. » (26)
i=1

As already argued by Kawaguti [4], it should be possible now to choose the coefficients
f;(r) in such a way that while the solution in equation (26) is only approximate, all the boundary

conditions are satisfied exactly.

For example, f,(r)=r?/3 reproduces ¥ in form (equation [22]); however, other terms are
clearly needed, as otherwise conditions in equations (13) and (14) cannot be satisfied [4]. The
simplest condition to satisfy equation (13) is to change f,(r)=r?/3 into (r2/3X1—a/r), which
also satisfies conditiohs in equations (13) and (22). Unfortunately, even for n =2, the condition

in equation (14) is not satisified; more terms as a power series in r™' are needed [4].

10




With Kawaguti [4], n =2 is chosen because

Py(E)-Py(E) = %(1— £) @7
and
RO-REO=-2(-¢). 28)
We write for y
P e S
y =Ua’s 2 SN : (29)
+(B‘+ﬁ B’+—B-‘Js(1 &)
p o> p )
and
p==. (30)
a

Equation (29) automatically satisfies the boundary condition in equation (22) of uniform flow
at infinity. The two conditions in equations (13) and (14) at the surface require

SA=-1, (31)
3B, =0, (32)
iiAi -1, (33)

i=1

11




and
4
YiB; =0. (34
i=1

For later use, the following identities are from equations (32-35):

4

Y (2+i)A; =0, (35)
and
2(3 +i)B; =0. (36)

The next step is to substitute equations (29) and (30) into equation (18), starting with just
A, A,, B,, and B, while assuming, at least temporarily, that the rest of coefficients are zero.
It is easily seen that this is not sufficient. Equations (31-36) are solved exactly to yield
A, =-2, A, =3/2,and B, =B, =0 and, as such, give a solution for . However, when this is
substituted into equation (18), the error is just too big and impossible to eliminate since the
coefficients have already been determined. Thus, it is best to assume that all A’s and B’s from
equations (29) and (30) are different from zero. The author may, however, later try to see what
happens if some of them (e.g., A4 and By) are put to zero. Substituting with these coefficients for
¥ into equation (18), an error denoted [1, 2, 4] as [NS] is obtained on the left-hand side of the

Navier-Stokes equation:

[NS]= (- £2)[Go(0) + £ G, (P) + £°G, () + £G, (p) + (1~ 322 )(E, (0) + £B, ()],  (37)

denoting

12




a =—> and b, =—-. (38)

Functions in equation (37) are expressed as follows:

Go(p) = —4‘[;

4
p(9a, +35a, +90a,)—(2a, +5a, +9a, Zbi)], (39)

5
i P

e

2 4
_Ri,o(b1 ~6b, —21b4)+(%—+23i](12a2 +35a, +73a,)

i=1

G@)=—t )

Jr(zbij(ma1 ~3b, - 7b,)

i=1

2 a4 4 ]
([%+Zai](— 6b, +15b, +42b4)+(z (2+i)ai](— 2b, +3b, +7b,)
i-1 i=1

4
Gz(p)=p—5 \ , (41)
+3(2a, + 52, +9a, Zbi)

i=1

G,(p) = —pis(i 3 +i)bi](2b1 —3b, - 7b4)’ (42)

E,(0) :i[(pz -iiai)(zb, —3b, -7b,)—(8a, + 252, + 54a, ibiﬂ’ (43)

5
p i=1 i=l

and

E,(p) =;2?[(ibi)(6bl —15b, -42134)—(24:i1>i](21>l -3b, —7b4):|. (44)

i=1

13




First, the Navier-Stokes equation is satisfied exactly on the sphere by the approximation for
¥, equations (29) and (30). Remember that when r —>a, p — 1, so that a; >A;andb, - B,

which, with the help of equations (31-36), demands:
9A, +35A, +90A, =0, (45)
and

B, -6B, -2IB, =0. (46)

With Kawaguti [4], in order to minimize the error, [NS] is expanded in terms F,(p,&) from
equation (24) with f(p) = p~, and each term must be zero. This is achieved if each coefficient

in the expansion is zero; for n = 2, these conditions are obtained:

Jaoo™ [a5(2.®) P, @))NSp.E) = NS1 =0, @)
and
Jdpp™ [z (P,(8) - P, (©))INS](p,E) = NS2 =0. 48)

The integrals in equations (47) and (48), although tedious, are nevertheless straightforward to
carry out. To facilitate this, the following functions are defined:

f(€)=¢(1-¢%),1=0123; (49)

and

14




h(§)=£'(1-£)1-3%%), i=0]. (50)

Then from equations (47) and (48), it is easily seen that in variable & , the following integrals are

needed:
If,, = _I!ds £, ()P, () - P, (), | (51)
i =_1!d.s £,(OF,)-P,(8),i=0123, | | (52)
Th;, = _I{ds h; ()P, (8) - P, 8)), (53)
| and
I, =_'!dshi(2)(fﬁ ®-P,(®),i=0]1. (54)

All are zero except for the following:

If,, =8/5, If,,, =8/35, (55)
If,,, =8/21,1f;,; = 8/63; (56)

and
Th,, =32/35. 57

15




Integrals in p must be calculated. They are defined as follows:

IG, = [dp G(o)o™", i=0123, (58)
1
IG,, = [do G,(o)p%, i=0,123; (59)
1
IE, = [do Ei(p)p, i=0y, (60)
1
and
IE;, = [do E(p)p™, i=01. 61)
1

In these notations, equations for NSland NS2 (equations [47] and [48], respectively) are

now written as follows:

NS1=If,1G; +Ifi, IG), + K, IG,, + If,,1G,, +Th o, IE,, +Ih,IE, =0, (62)
and

NS2 =1If ,,IG,, + Ifm‘IG12 +1If,;1G,, +If,,IG,, + Ih,IE,, +Th,,JE, =0. (63)

These integrals from equations (52-61) have been evaluated using the third edition of
Mathematica [5], yielding finally for NSl1and NS2 the following:

16



8[2880A, +7(~45+1035A, +1960A, +3204A,)]B, 32A,B,

NS1=-

11025 5
_4608AB, 8B, G64AB, 64A.B, 232A,B, 32B, 176A,B,
385 35 21 35 35 35 ”
L S6AB, 128A.B, 64A, 144A, (64)
15 455 R, R,
_16A,(-1386+176B,R, —99B,R —444B,R, ) _ -
1155R, ’
2 2 2
Ngy o 04A7 | 40AT 146A,  2336A\A, , 1168A7 16A, (65+91A, +216A,)
35 9 21 231 147 273
2
#38 (132+176A, +564A, +935A, ) - 8B, 12888, 16B,B,  64B,B, (65)
693 63 567 105 231
,8Bi 32BB, 16B,B, 352B,B, 64B; 32B, 48B, 64B, _,
21 693 27 273 63 2IR, R, 3R,

Equations (31-34), (45), (46), (64), and (65) are the eight equations necessary to solve for the
coefficients A,,A,,A,,A,,B,,B,,B;,andB,. Unlike equations (31-36), (45), and (46),

which are linear, equations (64) and (65) are quadratic in these coefficients; this fact makes
solving these equations simultaneously rather difficult. Nevertheless, equations (31-36), (45),

and (46) are solved expressing six of the coefficients first in terms of A, and B, and then, as an

exercise, a different set of six coefficients in terms of A, and B,. The results are as follows:

15 9 1
A=—SB+5A), Ay =—(7+7A), A, =——-(95+34A)),

23 19 5 (©0)
B, _?Bv B, ;Bl’ B, -——9—}31;
or
1 15 9

A, =——(95+58A,), A, =—(7+10A,), A, =——(3+14A)),
34 34 34 (67)
9 23 19

Bl =—'5—B4, B2 =—5—B4, B3 =——5—B4.

17




Utilizing equation (66) and substituting it into expressions of NSI and NS2, equations (64) and

(65), explicit expressions are obtained for them as follows:

NSI(A,,B,,R.) = - 4(- 401625 +87302A, )B, N 72(9+2Al)’

(68)
137162025 29R

€

and

NS2(A,,B,,R,)= !
64438719345R (69)

[70916685840B, +3645(5413185 + 756034A, +32880A% R, — 24207344B2R ],

which, when solved formally, yield

4725(162162 + 85B, Re) -

NSI=0: A, =—0 2, (70)
~170270100 + 87302B, Re
1
NS2=0: A,(H)=——"
239695200R
(71)

1
[— 2755743930R , +7830,/21R, (— 264055334408, — 2805569379R +9013504B12Re)5:l.

Unfortunately, this is the maximum progress achieved without specifying the values for the

Reynolds number R,. Namely, in order to get the allowed By’s, the A;’s from equation (69)

must be equated with the A, from equation (68). The resulting equation is quadratic for each of
the two By’s, yielding altogether four B;’s as well as four A;’s. As a éonsequence, there are four

sets of coefficients: A,,A,,A;,A,;B,,B,,B;,B,. However, for R, between 0 and 1,000,

only two sets are real, while the other two sets are complex; only real coefficients can define the

18




Stokes stream function. Furthermore, since only one set of these coefficients is calculated in the
literature [1, 4] and two independent solutions for the Stokes stream: function are offered, this
approach shows definite progress in this respect. Also, the single set solutions for the
coefficients differ numerically between references [1] and [4] as well as with the author’s precise

calculations, which employed the third edition of Mathematica package [5].

Specifying the Reynolds number R,, Table 1 presents the calculations of pairs of real
Aj, By, only; the rest of the corresponding real coefficients A,,A,,A,;B,,B,;,B, can then be

obtained from equation (66).

Table 1. Calculated Coefficients A; and B; for Two Numerical Solutions, I and II, of the
Navier-Stokes Equation by Galerkin Method. Here, the Reynolds Number Is
Varied Between 1 and 10,000

— —
— =~
“

I 1

| Re [ A | B A, { B, Il
1 —4.49912 —0.188993 22.6882 2931.63

10 —4.41227 1.89842 20.057 309.868 ||
20 —4.41547 —3.84605 16.645 171.199

30 23.7452 ~5.87988 142733 126.176 "
I 40 2321602 -8.00948 12.6375 103.969
50 1.98757 210.2042 11.459 90.7646

I 60 1.98757 123967 10.5744 82.0239 ||
70 21.38407 214507 9.88776 75.8178

80 T 0.830554 ~16.4721 29.34022 71.1879 |
90 0.338676 Z18.2581 8.52323 67.7492
100 0.0911558 19.8578 8.52323 67.7492
150 1.53085 25.5462 7.33534 56.2674
200 2.30045 28.8338 6.6967 52.0863
400 3.46462 34.1918 5.68153 459191
800 4.03814 ~37.0206 5.14878 42.8967
1,000 4.15159 375961 5.04031 42.2982
10,000 45551 | 396918 4.64432 40.1622
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In terms of these coefficients, expressions for velocity components can also be obtained now

by carrying the differentiation in equations (3) and (4). The results are as follows:
g, = 5% A, +0(A, + A0+ 4,07 Jeost+[B, +0(B, +B,o+B,0? 1 +3c0s26]), (72)

and

(73)

x[— si’:H +(4A, +p(3A, +24,0+A,0?)+ (4B, + p(3B, +2B, 0 + B, pz))COSG)sinﬁ].

Utilizing equation (66), these equations can be rewritten in terms of just A, and Bl. The

result is as follows:

,;_2{—95-341@1 +9(17+7A,)_15(8+5A1)+él]
n

58p* 29p° 29p°

¥ =a’Usin® 6 P g P PIL (7a
5B, 19B, 23B, B,

+——p+—— ——+—|cosb

9p 9p 9p

0 = 1

T 261p¢

—29B,(-1+ p)*(-5+9p) (75)

x U x +9(—95+306p—240p2+2A1(—1+p)z(—l7+29p))cos0
+87B,(~1+ p)*(~5+9p)cos? 6

bl

and
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sinf (76)

) { 1 [(9(—190+459p—240p2+A1(—68+189p-150p2+29p3))+J_ , H '
x| p— sin” @

~

261p° { | +29B, (— 20+57p—46p* +9p° )cosB

It has been known for quite some time that the Navier-Stokes equation has a steady solution
with the standard coefficients from Table 1 (denoted as I) when the Reynolds number is below
the critical point. In references [1] and [4], the critical Reynolds number is deduced to be about
100. Beyond this ﬁmnber, the steady flow becomes superimposed with secondary flows and/or
flows with vortices that become dominant as the Reynolds number approaches 1,000, as

indicated by Chow [6]. On the other hand, Kawaguti [4] claims that the solution for y (with the
standard coefficients) describes a steady flow only for 10 <R, <80. At R, =100. and beyond,

the flow becomes unstable and periodic and transforms itself into flow with von Karman’s

vortex-street or with distorted loops of vorticity arranged with some measure of symmetry.

Unfortunately, as the Reynolds number increases further (to 1,000 and beyond), the standard

solution for ¥ becomes more difficult to connect to experiments. In fact, Kawaguti [4] has

found that even when the Reynolds number is increased indefinitely, the Galerkin method with
the standard coefficients (I) would predict a steady solution for the Navier-Stokes equation,
although it could not be found experimentally. For this reason, it is necessary to study the
solutions to the Navier-Stokes equation, with the Galerkin method utilizing the second
coefficients (II). It is possible that, since coefficients I and II are distinictly different, the physics
of the flow will also be different. Hence, more than likely, the solution of the Navier-Stokes
equation with the coefficients II will describe the turbulent flow which, in turm, should

correspond to the fluid breakup.

Finally, the stability of the solutions, either with the coefficients I or II, should be

investigated by the perturbation method. Here, following Kawaguti [4], an exponential in time

21




perturbation is added to the steady solution, and whether this perturbation grows or disappears is

studied. Ifit grows, then an unstable solution indicates the likely fluid breakup.

4. Examples of Applications of the New and Standard
Solutions of the Navier-Stokes Equation

Conceming the type I coefficients entering into the Galerkin method solution for the
Navier-Stokes equation, by using a special type of perturbation, Kawaguti [4] deduced that the
critical Reynolds number (below which the airflow around the spherical fluid is steady) is about
51. Experimentally, however, it is known to be around 100 and beyond, depending on the fluid.
Also, the type I coefficients, while reproducing the calculated drag in a fair agreement with

experiments, fail to do so for vorticity and pressure distributions over the spherical fluid surface

[4].

These facts alone should be enough to pursue the solution for the Navier-Stokes equation

using the Galerkin method with the type II coefficients.

Figures 2-7 describe examples of angular dependencies of ¥, u,A, andu, at R, =1,000,
r=2a, a=1m, and U=30ms with type I and II coefficients. In specific evaluations, when
determining R, the viscosity p and the air density p would have to be taken explicitly into

account. Nevertheless, it is easily seen from these examples that graphs with coefficients II
describe a different physical situation than the graphs with the coefficients . Hence, the author
believes that the solution with the type II coefficients could very well be more appropriate to

describe the fluid breakup at very high (sonic) velocities of the fluid in the air.
S. Conclusion and Recommendations

Although much has been accomplished in this report when evaluating the stream functions
and velocity components around the spherical fluid, more could and should be done. In

particular, evaluations of the drag coefficients of the sphere, as well as the vorticity and pressure
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40+

Figure 2. Example of the Angular Dependence of the Stokes Stream Function y Around
the Spherical Fluid. It Was Evaluated With Coefficients I at R, =1,000, r =2a,

a=1myandU=30ms™".

ur

Figure 3. Example of the Angular Dependence of the Radial Component of the Air
Element Velocity u, Around the Spherical Fluid. It Was Evaluated With

Coefficients I at R, =1,000, r=2a, a=1m,and U =30 ms”'.
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Figure 4. Example of the Angular Dependence of the Angular Component of the Air
Element Velocity u, Around the Spherical Fluid. It Was Evaluated With

Coefficients I at R, =1,000, r=2a, a=1m,and U =30ms".
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0.5 1 1.5 2 2.5 3
Figure 5. Example of the Angular Dependence of the Stokes Stream Function y Around
the Spherical Fluid. It Was Evaluated With Coefficients 11 at R_ = 1,000,

r=2a,a=1m,andU=30ms"".

24




ur

-20F

Figure 6. Example of the Angular Dependence of the Radial Component of the Air
Element Velocity u, Around the Spherical Fluid. It Was Evaluated With

Coefficients II at R, =1,000, r=2a, a=1m,and U=30ms"".
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Figure 7. Example of the Angular Dependence of the Angular Component of the Air
Element Velocity u, Around the Spherical Fluid. It Was Evaluated With

Coefficients 1 at R, =1,000, r=2a, a=1m,andU=30ms"'.
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distributions over the spherical surface, should be done. These would be needed not only to

make intelligible comparisons with experiments but also to develop a full picture of the fluid

breakup after leaving either a ballistic or cruise missile.
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